

Groundwater Basics

Hydraulic head = pressure head + elevation head

Low Hydraulic Gradient

dh/dx = (100m - 90m)/100m = 0.1

High Hydraulic Gradient

H = 100 m

dx = 100 m

H = 10 m

dh/dx = (100m - 10m)/100m = 0.9

What controls flow?

- Darcy's Law: Q = -KA*dh/dx
- Flow is set by:
 - hydraulic gradient (dh/dx)
 - hydraulic conductivity K (ease of flow)

Other properties control flow

Types of bonds

 Swapping and sharing of electrons (e-) allows atoms to form compounds and molecules

Covalent

share e-

Ionic

opposite charges

Other properties control flow

Polar vs nonpolar

• Covalent bonds (e- are shared) can be either polar or nonpolar

Polar: one atom "hogs" the e-

Nonpolar: equal sharing of e-

Other properties control flow

Hydrophilic: "water loving" polar, form ionic bonds with water molecules

Hydrophobic: "water fearing" nonpolar, repel water molecules

Juice in water

Oil in water

How does this affect transport?

- Hydrophilic: "water loving" will more readily move with groundwater
 - transported longer distances
 - e.g. high concentrations of HCl in water
- Hydrophobic: "water fearing" will more readily stay in sediment
 - Stay in system longer
 - e.g. Dioxins and HCBs concentrations in the soil
 - HCB soil: 190-2100 ppm (Western Ditch and Main Ditch)
 - HCB groundwater: 0.41-3.0 ppb (monitoring wells)

Plume Transport

- Advection
- Dispersion
- Diffusion

Advection

 Movement of the contaminant by the flow of the fluid

Driving force is the hydraulic gradient

Head = 10 m

Direction of Flow

Just Advection:

Direction of Flow

Advection controls the LENGTH of the plume

In Reality:

Dispersion controls the WIDTH of the plume

Dispersion

Actually a combination of two processes:

- Mechanical Dispersion
 - Variation in the speed of contaminant

- Diffusion
 - Random motion

Mechanical Dispersion

Diffusion

: the movement of contaminants from areas with high concentration to low concentration via random motion

Effect of Diffusion without Advection H = 100 mdx = 100 mH = 99 m

Effect of Dispersion without Advection

