Mercury & Methyl Mercury in Great Salt Lake: Overview & Analysis

Ramesh Goel
Associate Professor
Department of Civil & Environmental Engineering
University of Utah

May 9th, 2012
Presentation Outline

• Introduction
 – Mercury & Mercury Cycle
 – Concerns
• Research Objectives
• Methods
 – Sampling Methods & Analysis
• Results & Discussions
• Summary
Introduction

Elemental Hg(0)

Inorganic Hg(I)/(II) → Organic

Oxidation/Reduction
Methylation
Demethylation

Human & Ecological Consequences

Ecosystem Transport

Emissions & Speciation

Atmospheric Transport & Depositions

Biological Uptake & Release
Concerns & Consequences

- Persistent Bioaccumulative Toxin (PBT)
- Ecological effects
 - Bioaccumulation & magnification
- Human health concerns
 - Potent neurotoxin
 - RfD for MeHg: 0.1 µg/kg-day
 - Acute LD$_{50}$ (Body weight of 70-kg human)
 - Inorganic: 14-57 mg/kg
 - Organic: 20-60 mg/kg (MeHg)
Mercury Concerns in Great Salt Lake (GSL) Watershed

• 2003 USGS finds Hg levels in GSL water, among highest ever measured

• Mercury sources
 – Hg in GSL likely not new
 – Natural/Anthropogenic

• 2005 USGS finds elevated Hg in brine shrimp, grebe livers from GSL

• 2005 DOH, DWR and DEQ, consumption advisories for fish and water fowl in Utah

• Great Salt Lake Ecosystem Program
 – Selenium (Se) Standard
 – Wetlands assessment plan
 – Mercury analysis
Research Objectives

- Synoptic sampling & analysis of mercury, in water column & sediments from Farmington Bay (FB), Utah Lake and Jordan River
- Analyze the fate of mercury entering municipal waste water treatment plants (WWTP), emptying into Jordan River
- To evaluate the rate of mercury methylation in the sediments from the Turpin unit of FB
- And, to investigate the ecology of sulfate reducers possibly participating in mercury methylation of the sediments
Methodology

• Cold Vapor Atomic Florescence Spectrometry (CVAFS)
• Reference methods 1630 and 1631 of EPA Hg Analysis
• Methyl mercury in sediments extraction using Liquid-Liquid Extraction (LLE) (Nicolas S. Bloom et al., 1997)

Sampling Strategies

• Water Column
 o EPA 1669 Clean Sampling Techniques
 o Preservation
• Sediments
 o Core Sampler
 o Processing & Storage

Analysis Aspects

• Quality Control parameters
 o Blanks
 o Calibration Standards
 o Certified Reference Materials
Mercury Analyzer Setup

Instrument setup

Distillation unit

Cold Vapor Atomic Florecente Spectrometer (CVAFS)
Total Mercury Analysis

Calibration Curve

\[y = 10233x - 159935 \]

\[R^2 = 0.9998 \]

Peak Area

Analyzed Conc. (pg)

Conc. (pg)
Methyl Mercury Analysis

Calibration Curve

- $y = 140.44x - 510.14$
- $R^2 = 0.9995$

- Concentration...
Sampling Locations
Methylation Rate Analysis Setup

Sediment Sample → Aliquot → Blank, Control, 6Hr Sample, 12Hr Sample

Frozen in Liquid N₂ & stored ≤-20 °C

Hg (II) → MeHg

\[K_{\text{METH}} = \frac{[\text{MeHg}]}{[\text{Hg (II)}]} \times t \]

Where,
\[K_{\text{METH}}: \text{Kinetic Rate Constant (Time}^{-1}) \]

Time: Days
Sulfate Reducers Diversity Analysis

1. DNA Extraction
2. Gene Amplification
3. Phylogenetic Analysis

- PCR
- Phylogenetic Analysis
- Cloning & Sequencing

Genomic DNA Extraction
Unv. Primers
Grp. Specific Primers

Clones on growth media spiked with kanamycin

Phylogenetic Analysis
Compare sequences with other similar 16S rRNA sequences of Sulfate Reducers
Water Column

<table>
<thead>
<tr>
<th>Site</th>
<th>THg (ng/L)</th>
<th>MeHg (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB1</td>
<td>18.65 ± 4.32</td>
<td>1.69 ± 0.007</td>
</tr>
<tr>
<td>FB2</td>
<td>5.56 ± 1.36</td>
<td>0.87 ± 0.268</td>
</tr>
<tr>
<td>FB3</td>
<td>26.30 ± 1.70</td>
<td>0.51 ± 0.006</td>
</tr>
<tr>
<td>FB4</td>
<td>15.45 ± 0.92</td>
<td>1.57 ± 0.702</td>
</tr>
<tr>
<td>FB5</td>
<td>29.25 ± 4.45</td>
<td>3.71 ± 0.594</td>
</tr>
<tr>
<td>FB6</td>
<td>29.90 ± 4.38</td>
<td>0.62 ± 0.017</td>
</tr>
</tbody>
</table>

Sediments

<table>
<thead>
<tr>
<th>Site</th>
<th>THg (µg/Kg)</th>
<th>MeHg (µg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>51.90 ± 17.89</td>
<td>0.11 ± 0.02</td>
</tr>
<tr>
<td>S2</td>
<td>78.07 ± 5.03</td>
<td>0.86 ± 0.65</td>
</tr>
<tr>
<td>S3</td>
<td>51.43 ± 13.83</td>
<td>0.07 ± 0.01</td>
</tr>
</tbody>
</table>
Utah Lake Mercury Analysis

Water Column

<table>
<thead>
<tr>
<th>Site</th>
<th>THg (ng/L)</th>
<th>MeHg (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL1</td>
<td>4.05 ± 0.21</td>
<td>0.054 ± 0.0450</td>
</tr>
<tr>
<td>UL2</td>
<td>2.33 ± 0.30</td>
<td>0.053 ± 0.0024</td>
</tr>
<tr>
<td>UL3</td>
<td>2.94 ± 0.45</td>
<td>0.025 ± 0.0195</td>
</tr>
<tr>
<td>UL4</td>
<td>2.65 ± 0.45</td>
<td>0.771 ± 0.0103</td>
</tr>
<tr>
<td>UL5</td>
<td>1.80 ± 0.57</td>
<td>0.059 ± 0.0315</td>
</tr>
<tr>
<td>JR (U)</td>
<td>19.95 ± 0.78</td>
<td>0.18 ± 0.08</td>
</tr>
<tr>
<td>JR (L)</td>
<td>26.9 ± 0.57</td>
<td>0.64 ± 0.072</td>
</tr>
</tbody>
</table>

Sediments

<table>
<thead>
<tr>
<th>Site</th>
<th>THg (µg/Kg)</th>
<th>MeHg (µg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL1</td>
<td>47.00 ± 2.12</td>
<td>0.0083 ± 0.004</td>
</tr>
<tr>
<td>UL2</td>
<td>23.6 ± 4.95</td>
<td>0.0456 ± 0.027</td>
</tr>
<tr>
<td>UL3</td>
<td>19.85 ± 1.63</td>
<td>0.2805 ± 0.057</td>
</tr>
<tr>
<td>UL4</td>
<td>21.95 ± 0.92</td>
<td>0.0094 ± 0.010</td>
</tr>
<tr>
<td>UL5</td>
<td>23.25 ± 3.23</td>
<td>0.0147 ± 0.019</td>
</tr>
<tr>
<td>JR (U)</td>
<td>18.50 ± 0.28</td>
<td>0.021 ± 0.00</td>
</tr>
<tr>
<td>JR (L)</td>
<td>79.05 ± 29.63</td>
<td>0.147 ± 0.023</td>
</tr>
</tbody>
</table>

[Map of Utah Lake and the Jordan River]
WWTP’s Mercury Analysis

<table>
<thead>
<tr>
<th>POTW's</th>
<th>Influent (ng/L)</th>
<th>Effluent (ng/L)</th>
<th>Bio-Solids (µg/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THg</td>
<td>MeHg</td>
<td>THg</td>
</tr>
<tr>
<td>NDSD</td>
<td>52.35 ± 1.77</td>
<td>0.967 ± 0.16</td>
<td>6.87 ± 4.34</td>
</tr>
<tr>
<td>CDSD</td>
<td>83.55 ± 9.97</td>
<td>1.55 ± 0.431</td>
<td>6.99 ± 3.12</td>
</tr>
<tr>
<td>SDSD (S)</td>
<td>95.65 ± 7.57</td>
<td>1.57 ± 0.651</td>
<td>8.68 ± 1.25</td>
</tr>
<tr>
<td>CVWRF</td>
<td>153 ± 11.32</td>
<td>1.165 ± 0.092</td>
<td>4.5 ± 2.79</td>
</tr>
<tr>
<td>SVWRF</td>
<td>190 ± 14.14</td>
<td>1.61 ± 0.678</td>
<td>11.5 ± 5.66</td>
</tr>
</tbody>
</table>

- Mercury Sources & Fate
- Bio-Solids
Methylation Rate Studies

- Comparative Study
- Factors affecting methylation
- What next?
 - Correlating methylation with biota mercury accumulation

<table>
<thead>
<tr>
<th>Sediment Sites</th>
<th>K_{METH} (Day$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.0302</td>
</tr>
<tr>
<td>S2</td>
<td>0.0120</td>
</tr>
<tr>
<td>S3</td>
<td>0.0210</td>
</tr>
<tr>
<td>Average</td>
<td>0.021 ± 0.0091</td>
</tr>
</tbody>
</table>
Microbial Diversity Established

(Total Number of Clones = 35)

<table>
<thead>
<tr>
<th>Group</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>No. of Clones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alphaproteobacteria</td>
<td>Caulobacterales</td>
<td>Caulobacteraceae</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Betaproteobacteria</td>
<td>Rhodocyclales</td>
<td>Rhodocyclaceae</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Deltaproteobacteria</td>
<td>Desulfobacterales</td>
<td>Desulfobacteraceae</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Clostridia</td>
<td>Clostridiales</td>
<td>Lachnospiraceae</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Sphingobacteria</td>
<td>Sphingobacterales</td>
<td>Flexibacteraceae</td>
<td>4</td>
</tr>
</tbody>
</table>

Bacteria identified from 16S rDNA sequencing of the clones from Farmington Bay using RDP Database

- Family *Desulfobacteraceae*
 - Acetate Utilizing Members
 - Genus’ *Desulfovibacter* & *Desulfonema*
Summary

• Established sampling and analysis methods
• Higher mercury levels associated with FB and wetlands in comparison to Utah Lake and Upper Jordan River
• The rates of mercury methylation and the phylogenetic diversity of sulfate reducers in the sediments of the FB wetlands were established
• Broader implications of understanding the control of methyl mercury and developing remediation strategies.
Acknowledgements

• Utah DWQ and Central Davis Sewer District for funding Farmington Bay work
• Mr. Leland Myers, Manager, & team, Central Davis County Sewer District
• Dr. Theron Miller, Jordan River/FB Water Quality Council
• Mr. Ken Burgener, Lab Director, North Davis Sewer District
Questions?

Thank You!
Other Research Findings

• Michael R. Conover, 2009
 – “Elevated Se & Hg concentrations in Sea Gulls nesting on GSL, did not appear to impaired gulls’ health or reproductive ability”

• Mae Gustin, 2008
 – “Higher Hg in brine shrimps from summer to fall”
 – “No direct or regional Hg source to lake”
Why is Mercury of concern???

- Ease of methylation
- Bacteria mediated conversions
- MeHg is lipophilic

<table>
<thead>
<tr>
<th>Physical & Chemical Conditions</th>
<th>Qualitative influence on methylation (sediments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low DO</td>
<td>Enhanced</td>
</tr>
<tr>
<td>Decreased pH</td>
<td>Decreased</td>
</tr>
<tr>
<td>Increased salinity</td>
<td>Decreased</td>
</tr>
<tr>
<td>Increased nutrients</td>
<td>Enhanced</td>
</tr>
<tr>
<td>Increased temp.</td>
<td>Enhanced</td>
</tr>
<tr>
<td>Increased sulfide/sulfate conc.</td>
<td>Enhanced</td>
</tr>
</tbody>
</table>
Bioenergetics

• Anoxic/AAnaerobic Microbial Metabolism
 – Fermentative
 – Sulfate/Nitrate/Carbonate Reduction

• Sulfate Reducers
 – $4(\text{AH}_2) + \text{SO}_4^{2-} + \text{H}^+ \rightarrow 4\text{A} + \text{HS}^- + 4\text{H}_2\text{O}$
 – Dissimilatory Sulfate Reduction

• Metabolic Process/Groups
 – Incomplete Oxidizers
 Lactate \rightarrow Pyruvate \rightarrow Acetate + CO$_2$
 – Complete Oxidizers
LACTATE → PYRUVATE → ACETATE

ACETYL-CoA PATHWAY IN COMPLETE OXIDIZING SRB STRAINS
Mercury Remediation Processes

- Remediation Processes
 - Dig and Dump
 - Pump and treat ex situ
 - In situ low-cost techniques
- Sorption & Precipitation
 - SRB’s are use as a source of H_2S for ppt. as HgS
- Demethylation Process
 - Mer Operon
 - Narrow Spectrum and Broad Spectrum
Disperse Mercury (non-point source)

Probable Bioaccumulation

Yes

Assess Exposure Pathways (consumption, inhalation)

No

Management and Monitoring

Mercury Remediation
Source: Jennifer Hinton-Mercury Contaminated Sites: A Review
Figure 2 - Appropriate Responses to Point Source Mercury Contamination

Probable or Proven Bioaccumulation?

YES \rightarrow Containment Measures

NO \rightarrow Management & Monitoring

Removal Feasible or Needed?

YES \rightarrow Treatment Feasible?

NO \rightarrow Landfill

YES \rightarrow Removal & Treat

In-Situ Treatment Techniques

- Soil Vapour Extraction
- Reactive Walls
- In-situ Leaching
- Chemical Immobilization
- Water Interceptors
- Phytoremediation
- Wetlands

Containment & Covering

- Inert Covers
- Reactive Covers

Physical Separation
- Hydrometallurgical
- Thermal